The Schrödinger equation with spatial white noise: The average wave function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Schrödinger equation with spatial white noise: the average wave function

We prove a representation for the average wave function of the Schrödinger equation with a white noise potential in d = 1, 2, in terms of the renormalized self-intersection local time of a Brownian motion.

متن کامل

The Schrödinger equation with spatial white noise potential

We consider the linear and nonlinear Schrödinger equation with a spatial white noise as a potential in dimension 2. We prove existence and uniqueness of solutions thanks to a change of unknown originally used in [8] and conserved quantities. 2010 Mathematics Subject Classification AMS:

متن کامل

Scaled Schrödinger equation and the exact wave function.

We propose the scaled Schrödinger equation and the related principles, and construct a general method of calculating the exact wave functions of atoms and molecules in analytical forms. The nuclear and electron singularity problems no longer occur. Test applications to hydrogen atom, helium atom, and hydrogen molecule are satisfactory, implying a high potentiality of the proposed method.

متن کامل

Effective noise theory for the nonlinear Schrödinger equation with disorder.

For the nonlinear Shrödinger equation with disorder it was found numerically that in some regime of the parameters Anderson localization is destroyed and subdiffusion takes place for a long time interval. It was argued that the nonlinear term acts as random noise. In the present work, the properties of this effective noise are studied numerically. Some assumptions made in earlier work were veri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2018

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2018.01.015